Making aerospace innovations fly

With high-end surface solutions, advanced materials and turbine components
Oerlikon – a global, high-tech engineering group with unique competencies

We are a market leader in advanced materials, surface engineering and polymer processing. Our solutions encompass materials, coating equipment, coating services, and the engineering of entire plants. We build our business on unique technology competencies, the widest global reach and trusted customer relations in highly demanding industries such as aerospace, automotive, energy, tooling and textiles.

Every day, we develop novel materials, new surface technologies, new applications, components and textile manufacturing solutions to empower our customers to create and innovate better products.

Every major aero engine manufacturer trusts our technologies to boost performance, improve safety and fuel efficiency and reduce emissions.

Prior to the current economic situation in 2020 resulting from world health concerns; the commercial aerospace market was driven by passenger traffic growth that had exceeded 6% per year for the past five years. Improved global economic conditions, income growth and strong MRO demand supported that trend. Recent world events have drastically reshaped the aerospace market. The rate and magnitude of the rebound of passenger air travel remains to be seen.

Our solutions for enhanced aircraft components

1. Actuation systems
2. Airframe and flight controls
3. Tools for structural development
4. Air conditioning systems
5. Interior decoration
6. Landing gears and air frame components
7. Tools for chassis processing
8. Fan blades, LPC and HPC blades, vanes, shrouds and rotor seals
9. Turbine hot section components such as combustors, bearings and bushings, HPT blades and vanes
10. Engine pylons, fuel pumps
11. Machining of lightweight materials
Making aerospace safer, more powerful and more efficient

Industry challenges

- Improve engine performance and efficiency to reduce fuel consumption and meet CO₂ and NOₓ emission standards
- Enable hot engine components to operate at higher temperatures to improve efficiency and extend lifespan
- Meet demanding requirements for next-generation aircraft landing gears and airframe components, while replacing noxious hard chromium processes
- Reduce weight and production cost of complex engine parts, structural components and replacement parts

Solutions

- Improve engine performance and efficiency to reduce fuel consumption and meet CO₂ and NOₓ emission standards
- Enable hot engine components to operate at higher temperatures to improve efficiency and extend lifespan
- Meet demanding requirements for next-generation aircraft landing gears and airframe components, while replacing noxious hard chromium processes
- Reduce weight and production cost of complex engine parts, structural components and replacement parts

- Improve gas path efficiency
  - Engines sealed with abradable coatings achieve improved performance, increased safety, decreased fuel consumption and reduced CO₂ and NOₓ emissions.
- Resist high temperatures
  - Thermal barrier coatings used in combustor and turbine sections of engines protect underlying materials from temperatures that these substrates could otherwise not tolerate.
- Ensure safe landings
  - Landing gears coated with our high-velocity oxygen fuel thermal spray technology achieve superior performance and safety. These coatings replace the noxious hard chromium process.
- Lower costs with increased lifetime
  - Functional PVD coatings significantly improve the performance and durability of precision components and tools. Component service life is increased by using our coatings that reduce friction and protect against wear.

- Faster instrument recognition
  - Attractive wear protection color coatings with long life and high performance for interior appliances.
- Break performance barriers
  - The design freedom of additive manufacturing technology enables optimized performance of aerospace parts with reduced weight and part consolidation.
- Top-notch machining
  - To improve aircraft engine efficiency, we produce sheet metal and machined components such as honeycomb seals, inserts and compressor vane assemblies.
- Lower costs with increased lifetime
  - Functional wear coatings significantly improve the performance and durability of bearings and bushing within the engine giving longer on-wing performance via reduced friction and protecting against wear.
Oerlikon Balzers surface solutions

Thin film solutions for aerospace components and cutting tools

Protect valuable components and cutting tools from all types of wear

We are one of the world’s leading suppliers of thin-film technologies that significantly improve the performance and durability of precision components and tools. Protected with our BALINIT® coatings, the lightweight components used in the aerospace industry permit greater loads, meet closer tolerances, and lower the cost of maintenance.

BALINIT® and BALIQ® coated cutting tools meet the highest expectations in machining high-end aerospace materials like titanium and nickel alloys as well as CFRP (carbon fiber reinforced plastics).

Thanks to our network of Nadcap-certified customer centers in all relevant industry locations around the globe, our aerospace customers benefit from high-end coating services wherever they are.

BALINIT® TURBINE PRO – a compressor erosion coating

BALINIT® TURBINE PRO, the anti-erosion coating for compressor blades, offers outstanding protection from solid particle erosion (SPE) and liquid droplet erosion (LDE) without affecting your component’s fatigue life.

BALINIT® TURBINE PRO is 40 times more erosion resistant than steel and 5 times more erosion resistant than other PVD coating solutions.

Coatings for cutting tools to machine aerospace components

Cutting tools have to resist wear under serious conditions, from high cutting temperatures to heavy loads causing friction and difficulties in removing chips.

We supply state-of-the-art BALINIT® coatings that fulfill those requirements — and are based on the environmentally friendly and future-oriented PVD and PACVD coating technologies.

Advantages of coated tools:
- Longer tool life
- Retention of tolerances and surface quality
- Increase of productivity due to higher cutting speed and feed
- Possibility of reduced lubrication and dry machining
- Enable machining within smaller tolerances
- Excellent wear resistance of the tools

Coatings for aircraft interior design

Oerlikon Balzers offers attractive wear protection color coatings with long life and high performance for interior appliances. Cabin fixtures can be coated with BALTONE™ coatings offering a wide range of colors to match your aircraft interiors.
Oerlikon Metco surface and material solutions

Maximum protection to optimize performance, reliability and durability

Today, almost all turbine-powered aircrafts have our solutions on board, and we have more OEM approvals than any other coating material supplier. Our next-generation solutions are designed to protect expensive aerospace components from wear, corrosion, oxidation, thermal attack and more. Even as operating temperatures continue to rise for aircraft power plants, our solutions will be there to keep them operating efficiently and safely.

A trusted partner today that’s ready to protect and optimize the performance of tomorrow’s aircraft.

- **Fan LPC**
- **HPC**
- **Combustor HPT**
- **LPT**

Current engine temps

- 25 °C
- 1600 °C

Push for higher temps to improve efficiency

- 25 to 450 °C
- 450 to 850 °C
- 1100 to 2000 °C
- 2000 to 1100 °C

High-Tech protection for CMC parts

Costly parts made new again

Innovative brazing solutions

Operate at peak efficiency

Quell high-temperature corrosion

Novel solutions for hotter engines

Our advanced EBC coating solutions protect ceramic matrix composites from CMAS attack.

Our laser cladding services apply advanced materials to blade tips for effective clearance control.

New high performance braze materials designed to require less heat input to braze, boosting vacuum furnace throughput and reducing stress on parts.

As the leader in abradable coatings, we continually evolve our solutions to more effectively improve efficiency in all parts of the engine.

Advanced corrosion coatings protect HPC, HPT and LPT blades from oxidation and corrosion.

New compositions for advanced-structured TBCs and efficient, novel approaches to applying them allow engines to operate at higher temperatures over long service intervals.
We ensure our customers get the best solution by using all of our expertise and know-how during every step of the process. Our goal is to provide our customers with a solution that not only meets their exact technical requirements, but is also as efficient and cost-effective as possible.

One stop solution provider for hot and cold section turbine engine components

- Production cell concepts servicing high level of delivery performance
- Cross functional work approach with customers for new part introduction
- LEAP program supplier
- Leading, high-end machining and manufacturing processes such as EDM, laser cutting, drilling

Technology and services designed to provide the best performance and efficiency

- Material generation
- Application technology
- Process optimization
- Surface solution
- Process optimization

- Design and selection of materials to address the customer’s application requirements
- Tailored state-of-the-art equipment to efficiently apply a superior surface solution
- Optimized materials and processes yield a surface solution of the highest performance
- Advanced cost effective surface solutions for today’s and tomorrow’s critical aerospace components

- Materials for:
  - Power plants
  - Landing gears
  - Airframes
- Equipment for:
  - Thermal spray
  - Laser cladding
- Coating solution centers:
  - many materials, processes and equipment for optimal performance

- Coating centers deploy solutions using:
  - Thermal spray
  - Laser cladding
  - PS-PVD

- Turbine seals:
  - Provide sealing between the engine housing and the rotating blades to maintain gas-path compression.
  - The seals are manufactured from sheet metal or forgings. Customer-specific, shaped honeycomb is brazed onto the seal to ensure the sealing function of the component.

- Turbine airfoils cooling hole drilling:
  - Cooling holes (transversal / longitudinal) prevent the deformation of rotating airfoils from the intense heat of the engine’s hot section. These cooling holes are processed through ECD or EDM processes and inspected by airflow testing.

- Honeycomb and braze materials:
  - Lines the inside of air seals and ring segments in order to provide a porous, heat-resistant surface to seal airflow against the rotating blades. Thin sheet metal ribbons are spot welded together into a final assembly. The finished honeycomb seal is brazed into place on engine components in vacuum furnace oven.

- Vane inserts:
  - Sheet metal inserts provide accurate impingement cooling on the inside of the hollow airfoils. Blanks are pressed into the correct shape. Welding assures the closure of the insert.

Coating centers marry materials, processes and equipment for optimal performance.

Advanced cost effective surface solutions for today’s and tomorrow’s critical aerospace components.

Coating centers deploy solutions using:
- Thermal spray
- Laser cladding
- PS-PVD
Oerlikon AM additive manufacturing solutions

Making aircraft safer, lighter and more efficient

Typical aerospace applications are complex engine parts, structural components and replacement parts. Additive manufacturing enables the production of such parts at a lower weight and significantly reduced life-cycle costs.

For aircraft applications like brackets,ducting, or seat belt buckles, additive manufacturing can be leveraged for weight and flow optimization, sound reduction, and part count reduction.

Additive manufacturing can also have a significant impact on aero engines by integrating components for reduced part counts and mass for compressor vanes, diffusers, acoustic attenuation, heat exchangers, and more.

From brackets to instrument housings in helicopters, and from fuselage structures to battery compartments in UAVs, additive manufacturing makes a difference in a variety of rotorcraft and defense applications.

1. Aircraft brackets
2. Seat belt buckles
3. Ducting
4. Impact protection
5. Compressor vanes
6. System integration
7. Heat exchangers
8. Ducting
9. Diffusers
10. Acoustic attenuation
11. Vents
12. Windshield defogger duct nozzles
13. Brackets
14. Housing and enclosures
15. Drain fairings
16. Payload enclosures
17. Camera mounts and gimbals
18. NACA ducts
19. Fuselage structure
20. Fuel tanks
21. Shrouds and closeouts
22. Wing structure
23. Battery compartment
24. Oil tanks
25. Ailerons and flaps
Why choose us as your partner?

We provide:

- AS9100, ITAR registered, full spectrum capabilities for quality control and traceability, and affordability, with powder atomization, R&D and production all delivered in-house
- Aerospace-specific application engineering with focus on areas like generative design / weight reduction, highly customized parts, weld elimination, reverse engineering and replacement of obsolete parts. Support for material and component qualification
- Collaboration opportunities: Material development, data set / design allowables generation, R&D, application engineering, series production and prototypes
Contact us today and tap into our productivity-boosting expertise in surface solutions, advanced materials, turbine components and additive manufacturing solutions — tailored explicitly for aerospace applications!

Business unit headquarters

Oerlikon Balzers
Iramali 18
LI-9496 Balzers
Liechtenstein
T +423 388 7500
www.oerlikon.com/balzers

Oerlikon Metco
Churorstrasse 120
CH-8806 Pfäffikon
Switzerland
T +41 58 360 96 96
www.oerlikon.com/metco

Oerlikon AM
Kapellenstraße 12
D-85622 Feldkirchen
Germany
T +49 89 203 015 015
www.oerlikon.com/am

Nadcap accredited
- Debrecen / Hungary (Metco)
- Ferrières-en-Brie / France (Balzers)
- Ft. Saskatchewan / Canada (Metco)
- Guelph / Canada (Balzers)
- Lomm / Netherlands (Metco)
- Milton Keynes / UK (Balzers)
- Niedercorn / Luxembourg (Balzers)
- Plymouth, MI / USA (Metco)
- Troy, MI / USA (Metco)
- Salzgitter / Germany (Metco)
- Westbury, NY / USA (Metco)

EN/AS/JISQ 9100 certified
- Barchfeld / Germany (Metco) also ISO 17025
- Charlotte, NC / USA (AM)
- Debrecen / Hungary (Metco, Eldim)
- Elgin, IL / USA (Balzers)
- Ferrières-en-Brie / France (Balzers)
- Ft. Saskatchewan / Canada (Metco)
- Lomm / Netherlands (Metco, Eldim)
- Milton Keynes / UK (Balzers)
- Plymouth, MI / USA (Metco)
- Salzgitter / Germany (Metco)
- Troy, MI / USA (Metco)
- Stockport / UK (Metco, Neomet)
- Westbury, NY / USA (Metco)
- Wohlen / Switzerland (Metco)

Count on a powerful network of over 150 sites in 37 countries

Nadcap administrated by PRI

Nadcap Accredited